Mathematical modelling for determining COVID-19 incidence from testing data

Rasmus Kristoffer Pedersen

Postdoc, PandemiX Center, IMFUFA Dept. Science and Environment, Roskilde University, Denmark Email: rakrpe@ruc.dk Joint work with Christian Berrig and Viggo Andreasen

Contributed talk at "Data-driven mechanistic mathematical modelling for life-science applications" Göteborg, October 23rd, 2023

Determining COVID incidence

RK Pedersen

Introduction

The problemati Our approach

Model presentation

Analysis

Model dynamics Model analysis Calculating correction-fact

Data and simulations

The data Relating to data

Discussion

Different approaches to COVID-19 mitigation throughout the world

Determining COVID incidence

RK Pedersen

Introduction

The problematic

Our approach

Model presentation

Analysis

Model dynamics Model analysis

Data and simulations

The data Relating to data

Discussion

- Different approaches to COVID-19 mitigation throughout the world
- To compare mitigation-strategies, the impact of differences in data-collection must be understood.

Determining COVID incidence

RK Pedersen

Introduction

The problematic

Our approach

Model presentation

Analysis

Model dynamics Model analysis Calculating correction-fa

Data and simulations

The data Relating to data

Discussion

- Different approaches to COVID-19 mitigation throughout the world
- To compare mitigation-strategies, the impact of differences in data-collection must be understood.
- The role of testing: Confirmation of symptoms, required for various activities or entirely voluntary?

Determining COVID incidence

RK Pedersen

Introduction

The problematic

Our approach

Model presentation

Analysis

Model dynamics Model analysis Calculating correction-fac

Data and simulations

The data Relating to data

Discussion

- Different approaches to COVID-19 mitigation throughout the world
- To compare mitigation-strategies, the impact of differences in data-collection must be understood.
- The role of testing: Confirmation of symptoms, required for various activities or entirely voluntary?
- How do we compare case-counts between periods and places where testing activity was different?

Determining COVID incidence

RK Pedersen

Introduction

The problematic

Our approach

Model presentation

Analysis

Model dynamics Model analysis Calculating correction-fac

Data and simulations

The data Relating to data

Discussion

- Different approaches to COVID-19 mitigation throughout the world
- To compare mitigation-strategies, the impact of differences in data-collection must be understood.
- The role of testing: Confirmation of symptoms, required for various activities or entirely voluntary?
- How do we compare case-counts between periods and places where testing activity was different?

Let's look at some data...

Determining COVID incidence

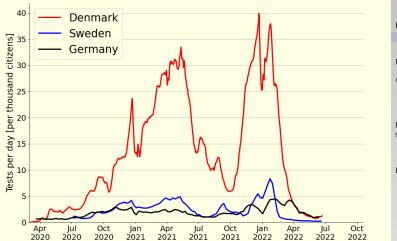
RK Pedersen

Introduction

The problematic

Our approach

Model presentation


Analysis

Model dynamics Model analysis Calculating correction-fac

Data and simulations

The data Relating to data

Discussion

Determining COVID incidence

RK Pedersen

Introduction

The problematic

Our approach

Model presentation

Analysis

Model dynamics Model analysis

Calculating correction-factor

Data and simulations

The data Relating to data

Discussion

Overall question: For each reported case of COVID-19, how many unidentified cases?

Determining COVID incidence

RK Pedersen

Introduction

The problematic

Our approach

Model presentation

Analysis

Model dynamics Model analysis

Calculating correction-factor

Data and simulations

The data Relating to data

Discussion

- Overall question: For each reported case of COVID-19, how many unidentified cases?
- We aim to determine a correction factor for observed data.

Determining COVID incidence

RK Pedersen

Introduction

The problematic

Our approach

Model presentation

Analysis

Model dynamics Model analysis

Data and simulations

The data Relating to data

Discussion

- Overall question: For each reported case of COVID-19, how many unidentified cases?
- We aim to determine a correction factor for observed data.
- Approach: Extend the classic SIR-model to include testing.

Determining COVID incidence

RK Pedersen

Introduction

The problematic

Our approach

Model presentation

Analysis

Model dynamics Model analysis

Data and simulations

The data Relating to data

Discussion

The conceptual idea

Determining COVID incidence

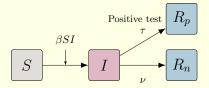
RK Pedersen

Introduction

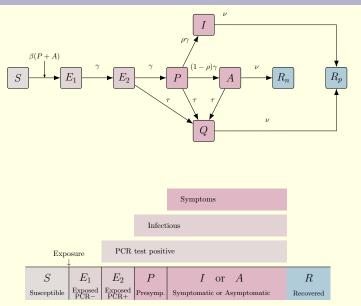
The problemat

Our approach

Model presentation


Analysis

Model dynamics Model analysis


Data and simulations

The data Relating to data

Discussion

The model

Determining COVID incidence

RK Pedersen

Introduction

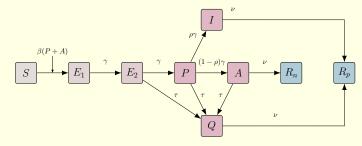
The problemat

Our approach

Model presentation

Analysis

Model dynamics Model analysis


Calculating correction-factor

Data and simulations

The data Relating to data

Discussion

The model

$$\dot{S} = -\beta S(P + A)$$
$$\dot{E}_1 = \beta S(P + A) - \gamma E_1$$
$$\dot{E}_2 = \gamma E_1 - (\gamma + \tau) E_2$$
$$\dot{P} = \gamma E_2 - (\gamma + \tau) P$$
$$\dot{I} = \gamma \rho P - \nu I$$

$$\dot{A} = \gamma(1-
ho)P - (
u + au)A$$

 $\dot{Q} = au(E_2 + P + A) -
uQ$
 $\dot{R}_{
ho} =
uQ +
uI$
 $\dot{R}_{
ho} =
uA$

 $\tau :$ Testing-rate. $\beta :$ Infectivity.

Determining COVID incidence

RK Pedersen

Introduction

The problemat

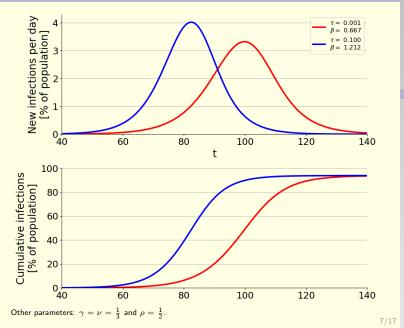
Our approach

Model presentation

Analysis

Model dynamics Model analysis

Data and simulations


The data Relating to data

Discussion

Calculation of assertion ratio Simplification and extension General discussion

6/17

General model dynamics

Determining COVID incidence

RK Pedersen

Introduction

The problemati

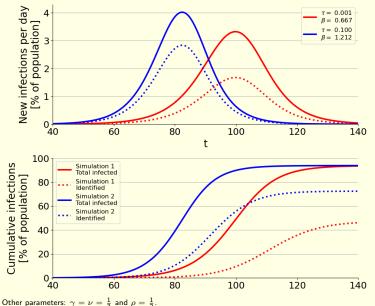
Our approach

Model presentation

Analysis

Model dynamics

Model analysis


Calculating correction-factor

Data and simulations

The data Relating to data

Discussion

General model dynamics

Determining COVID incidence

RK Pedersen

Introduction

The problemati

Our approach

Model presentation

Analysis

Model dynamics

Model analysis

Calculating correction-factor

Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio Simplification and extension General discussion

7/17

We describe the correction factor as ratio between all cases and cases identified:

$$\frac{R_n(t)+R_p(t)}{R_p(t)}$$

Determining COVID incidence

RK Pedersen

Introduction

The problema

Our approach

Model presentation

Analysis

(1)

Model dynamics

Model analysis

Calculating correction-factor

Data and simulations

The data Relating to data

Discussion

We describe the correction factor as ratio between all cases and cases identified:

$$\frac{R_n(t) + R_p(t)}{R_p(t)}$$

Inspired by previous work on epidemic final size¹ (and after a lot of analysis and calculation), we find that as $t \to \infty$

$$\frac{R_{\rho}}{R_{n}+R_{\rho}} = 1 - \left(1 - \frac{\tau}{\gamma + \tau}\right) \left(1 - \frac{\gamma \rho + \tau}{\gamma + \tau}\right) \left(\frac{\nu}{\nu + \tau}\right)$$
(2)

(Andreasen, 2018, Bull. Math. Biol.)

Determining COVID incidence

RK Pedersen

Introduction

The problemat

Jur approach

Model presentation

Analysis

(1)

Model dynamics

Model analysis

Calculating correction-factor

Data and simulations

The data Relating to data

Discussion

We describe the correction factor as ratio between all cases and cases identified:

$$\frac{R_n(t) + R_p(t)}{R_p(t)}$$

Inspired by previous work on epidemic final size¹ (and after a lot of analysis and calculation), we find that as $t \to \infty$

$$\frac{R_{p}}{R_{n}+R_{p}} = 1 - \left(1 - \frac{\tau}{\gamma+\tau}\right) \left(1 - \frac{\gamma\rho+\tau}{\gamma+\tau}\right) \left(\frac{\nu}{\nu+\tau}\right)$$
(2)

Note that this is independent of β .

Determining COVID incidence

RK Pedersen

Introduction

The problemat

Our approach

Model presentation

Analysis

(1)

Model dynamics

Model analysis

Calculating correction-factor

Data and simulations

The data Relating to data

Discussion

¹(Andreasen, 2018, Bull. Math. Biol.)

Calculating the correction-factor

Determining COVID incidence

RK Pedersen

Introduction

The problemat

.....

Model presentation

Analysis

Model dynamics

Model analysis

Calculating correction-factor

Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio Simplification and extension General discussion

$$\frac{R_{p}}{R_{n}+R_{p}} = 1 - \left(1 - \frac{\tau}{\gamma + \tau}\right) \left(1 - \frac{\gamma \rho + \tau}{\gamma + \tau}\right) \left(\frac{\nu}{\nu + \tau}\right)$$

With parameters: $\gamma = \nu = \frac{1}{3}$ and $\rho = \frac{1}{2}$.

Calculating the correction-factor

$\frac{R_{p}}{R_{n}+R_{p}} = 1 - \left(1 - \frac{\tau}{\frac{1}{3} + \tau}\right) \left(1 - \frac{\frac{1}{3} \cdot \frac{1}{2} + \tau}{\frac{1}{3} + \tau}\right) \left(\frac{\frac{1}{3}}{\frac{1}{3} + \tau}\right)$

With parameters: $\gamma = \nu = \frac{1}{3}$ and $\rho = \frac{1}{2}$.

Determining COVID incidence

RK Pedersen

Introduction

The problemat

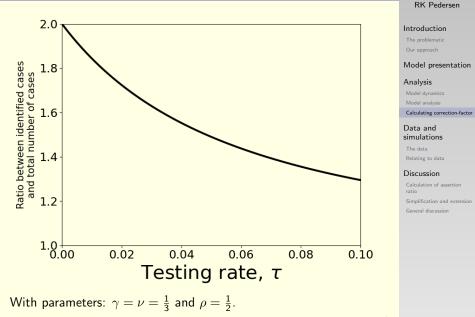
Our approach

Model presentation

Analysis

Model dynamics

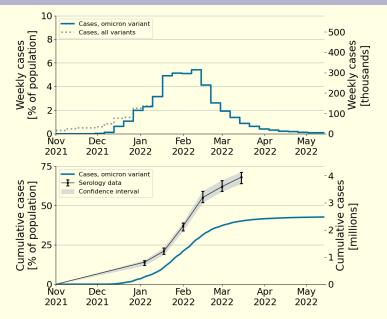
Model analysis


Calculating correction-factor

Data and simulations

The data Relating to data

Discussion


Calculating the correction-factor

9/17

Determining COVID incidence

The Danish data

Determining COVID incidence

RK Pedersen

Introduction

The problemation

Our approach

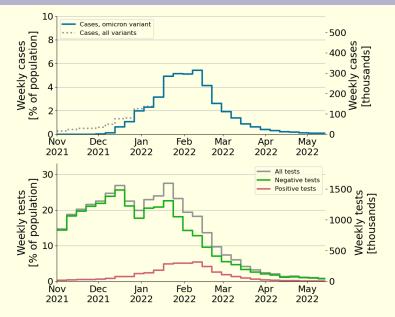
Model presentation

Analysis

Model dynamics

Model analysis

Calculating correction-factor


Data and simulations

The data

Relating to data

Discussion

The Danish data

Determining COVID incidence

RK Pedersen

Introduction

The problemation

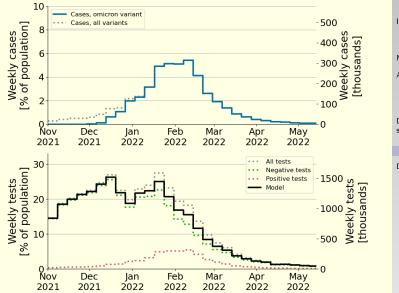
Our approach

Model presentation

Analysis

Model dynamics

Model analysis


Calculating correction-factor

Data and simulations

The data

Relating to data

Discussion

Determining COVID incidence

RK Pedersen

Introduction

The problemat

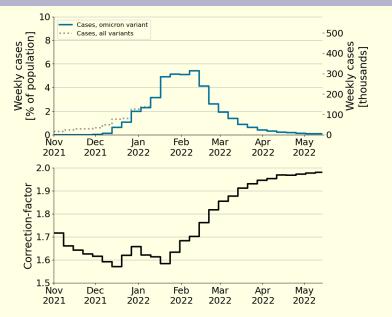
Our approach

Model presentation

Analysis

Model dynamics

Model analysis


Calculating correction-factor

Data and simulations

The data

Relating to data

Discussion

Determining COVID incidence

RK Pedersen

Introduction

The problemation

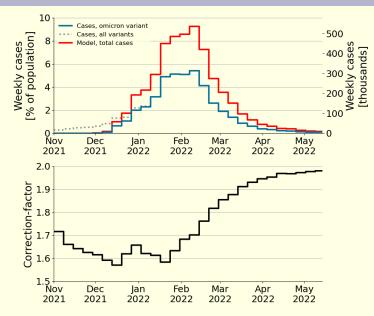
Our approach

Model presentation

Analysis

Model dynamics

Model analysis


Calculating correction-factor

Data and simulations

The data

Relating to data

Discussion

Determining COVID incidence

RK Pedersen

Introduction

The problemat

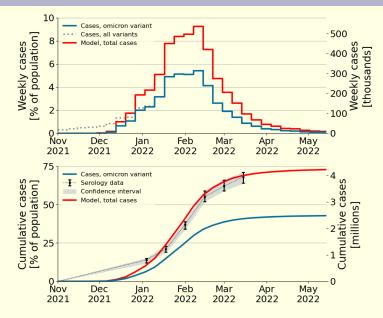
Our approach

Model presentation

Analysis

Model dynamics

Model analysis


Calculating correction-factor

Data and simulations

The data

Relating to data

Discussion

Determining COVID incidence

RK Pedersen

Introduction

The problema

Our approach

Model presentation

Analysis

Model dynamics

Model analysis

Calculating correction-factor

Data and simulations

The data

Relating to data

Discussion

Calculation of assertion ratio

In general, we consider initial conditions such that the vast majority of the population is initially susceptible, $S_0 \approx 1$, and the initial number of cases is $\dim v_0 < c_{1,0} \ll 1$. In the limit where $S_0 \rightarrow 1$, with $E_{1,0} \rightarrow 0$, $E_{2,0} \rightarrow 0$, $R_1 \rightarrow 0$ and $A_0 \rightarrow 0$, equations $\frac{1}{60}$ become:

$\log \sigma = -\beta(T_P - T_A)$	(7a)
$\sigma = 1 - (\gamma + \tau)T_{E_2}$	(7b)
$\sigma = 1 - (\gamma + \tau)T_P - \tau T_{E_2}$	(7c)
$\sigma = 1 - (\nu + \tau)T_A - (\gamma \rho + \tau)T_P - \tau T_{E_2}$	(7d)

Assuming $T_P + T_A \neq 0$, this can be written as:

β-	$\frac{-\log \sigma}{T_P + T_A}$	(8a)

$$= \frac{1}{\gamma + \tau} (1 - \sigma) \qquad (8)$$

$$T_P = \frac{1}{\gamma + \tau} (1 - \sigma - \tau T_{F_2}) \qquad (3)$$

$$T_A = \frac{1}{\nu + \tau} \left(1 - \sigma - (\gamma \rho + \tau)T_P - \tau T_{E_2}\right) \qquad ($$

We define $K_F = \frac{r_p}{r_p + r_n}$ and note that at steady state $\sigma = 1 - r_p - r_n$ must hold. This implies that

 $K_F = \frac{r_F}{1-\sigma}$. Combining equations (8) with equations (3) and (6) under the assumptions $R_{p,0} = 0$ and $R_{n,0} = 0$ and simplifying yields:

$$K_F = \frac{r_p}{r_p + r_n} = \frac{r_p + r_n - r_n}{r_p + r_n} = 1 - \frac{r_n}{r_p + r_n} = 1 - \frac{r_n}{1 - \sigma} = 1 - \frac{\nu}{1 - \sigma}T_A$$
 (9)

$$r_F = 1 - \left(\frac{\nu}{\nu + \tau}\right) \left(1 - \frac{\tau}{\gamma + \tau}\right) \left(1 - \frac{\gamma \rho + \tau}{\gamma + \tau}\right)$$
(1)

For initial conditions sufficiently close to the case where $S_0 = 1$ and all other variables are zero, K_F is an approximation of the final size of K(t) as $t \rightarrow \infty$.

Note that the expression for K_F , equation [10] is independent of σ and β .

For this is a consistence of test, i.e. for $\tau = 0$, we have $m(\rho) = m(\rho)$. This is expected, as only the symptomatic cases, I, are found in the situation where $\tau = 0$, and the symptomatic cases make up encept $\rho \neq 0$ and cases.

To the simulation where all cases are symptomatic, $\rho = 1$, we obtain $K_F = 1$, that is, all cases are identified. We note that equation (\overline{S}_{0}) describes a relation between β and σ . Since T_P and T_A are described in terms of γ , τ , ν and σ , it is possible to use equation (\overline{S}_{0}) to determine a value of β that yields a particular σ .

$$\frac{R_{p}}{R_{n}+R_{p}} = 1 - \left(1 - \frac{\tau}{\gamma + \tau}\right) \left(1 - \frac{\gamma \rho + \tau}{\gamma + \tau}\right) \left(\frac{\nu}{\nu + \tau}\right)$$

(5)

A.3 Final Size Calculations

As $t \rightarrow \infty$, the model system approaches a steady state without any active cases. In this section, we derive an analytic expression for the value that the fraction of cases identified, K(t), approaches as $t \rightarrow \infty$. To obtain an expression for K_F , we follow the methodogy previously considered by 7.

For notational purposes, we define for each variable x, the integral over the full epidemic as $T_x = \int_0^\infty x dt$. From the system of differential equations given in equations (1), we write up the following quantities:

$$\hat{S}/S = -\beta(P + A)$$
 (3a)
 $\hat{S} + \hat{E}_1 + \hat{E}_2 = -(\gamma + \tau)\hat{E}_2$ (3b)
 $\hat{S} + \hat{E}_1 + \hat{E}_2 + \hat{P} = -(\gamma + \tau)P - \tau E_2$ (3c)
 $\hat{S} + \hat{E}_1 + \hat{E}_2 + \hat{P} = -(\gamma + \tau)P - \tau E_2$ (3c)

$$\hat{S} + \hat{E}_1 + \hat{E}_2 + \hat{P} + \hat{A} = -(\nu + \tau)A - (\gamma \rho + \tau)P - \tau E_2$$
 (3d)

As t approaches infinity, the stability of the systems implies that all variables apart from S, R_p and R_n are zero. We denote that final size of these variables as $S(t) \xrightarrow[t \to \infty]{t \to \infty} \sigma$, $R_p(t) \xrightarrow[t \to \infty]{t \to \infty} r_n$

Integrating equations (3) from t = 0 to $t = \infty$ yields:

$$\log \sigma = -\beta(T_P - T_A) \quad (4a)$$

$$\sigma - S_0 - E_{1,0} - E_{2,0} = -(\gamma + \gamma)T_{E_0} \quad (4b)$$

$$\sigma - S_0 - E_{1,0} - E_{2,0} - P_0 = -(\gamma + \gamma)T_P - \tau T_{E_0} \quad (4c)$$

$$\sigma - S_0 - F_{0,0} - P_0 = -(\mu + \gamma)T_P - \tau T_{E_0} \quad (4c)$$

Where
$$X_0$$
 denote the initial condition for variable X.

Furthermore, observe that the equations for \hat{R}_n and \hat{R}_p , equations [1] and [1] respectively, when integrated from t = 0 to $t = \infty$ yields:

$$r_p - R_{p,0} = \nu T_Q + \nu T_I$$

 $r_n - R_{n,0} = \nu T_A$

Determining COVID incidence

RK Pedersen

Introduction

The problemation

)ur annroach

Model presentation

Analysis

Model dynamics

Model analysis

Calculating correction-factor

Data and simulations

The data

Discussion

Calculation of assertion ratio

Simplification and extension

$\frac{R_{p}}{R_{n}+R_{p}}=1-\left(1-\frac{\tau}{\gamma+\tau}\right)\left(1-\frac{\gamma\rho+\tau}{\gamma+\tau}\right)\left(\frac{\nu}{\nu+\tau}\right)$

can be rewritten as:

$$1 - \frac{R_{p}}{R_{n} + R_{p}} = \frac{R_{n}}{R_{n} + R_{p}} = \left(\frac{\gamma}{\gamma + \tau}\right) \left(\frac{(1 - \rho)\gamma}{\gamma + \tau}\right) \left(\frac{\nu}{\nu + \tau}\right)$$

Determining COVID incidence

RK Pedersen

Introduction

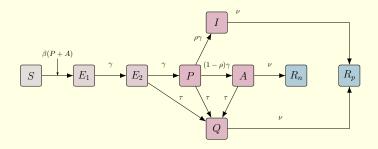
The problemat

Model presentation

Analysis

Model dynamics Model analysis

Calculating correction-factor


Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio

Simplification and extension

Determining COVID incidence

RK Pedersen

Introduction

The problemat

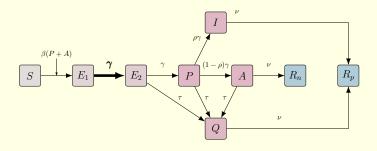
Model presentation

Analysis

Model dynamics

Model analysis

Calculating correction-factor


Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio

Simplification and extension

 $\left(\frac{\gamma}{\gamma}\right)$

Determining COVID incidence

RK Pedersen

Introduction

The problemat

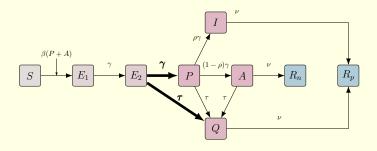
Model presentation

Analysis

Model dynamics

Model analysis

Calculating correction-facto


Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio

Simplification and extension

$$\left(\frac{\gamma}{\gamma}\right) \left(\frac{\gamma}{\gamma+\tau}\right)$$

Determining COVID incidence

RK Pedersen

Introduction

The problemat

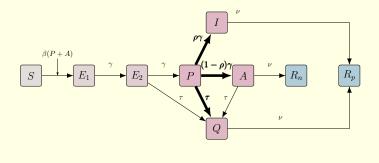
Model presentation

Analysis

Model dynamics

Model analysis

Calculating correction-factor


Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio

Simplification and extension

$$\left(\frac{\gamma}{\gamma}\right)\left(\frac{\gamma}{\gamma+\tau}\right)\left(\frac{(1-\rho)\gamma}{\gamma+\tau}\right)$$

Determining COVID incidence

RK Pedersen

Introduction

The problemat

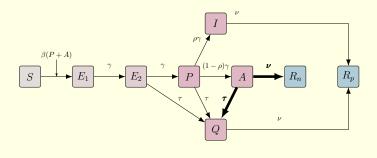
Model presentation

Analysis

Model dynamics

Model analysis

Calculating correction-factor


Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio

Simplification and extension

$$\left(\frac{\gamma}{\gamma}\right)\left(\frac{\gamma}{\gamma+\tau}\right)\left(\frac{(1-\rho)\gamma}{\gamma+\tau}\right)\left(\frac{\nu}{\nu+\tau}\right)$$

Determining COVID incidence

RK Pedersen

Introduction

The problemat

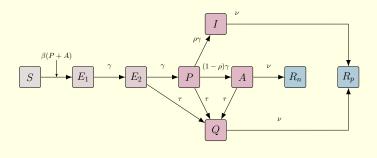
Model presentation

Analysis

Model dynamics

Model analysis

Calculating correction-factor


Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio

Simplification and extension

$$\frac{R_n}{R_n + R_p} = \left(\frac{\gamma}{\gamma + \tau}\right) \left(\frac{\gamma(1 - \rho)}{\gamma + \tau}\right) \left(\frac{\nu}{\nu + \tau}\right)$$

Determining COVID incidence

RK Pedersen

Introduction

The problemat

Model presentation

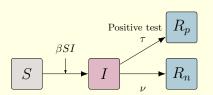
Analysis

Model dynamics

Model analysis

Calculating correction-factor

Data and simulations


The data Relating to data

Discussion

Calculation of assertion ratio

Simplification and extension

Extension to other models, example 1

Flow-considerations:

Determining COVID incidence

RK Pedersen

Introduction

The problemat

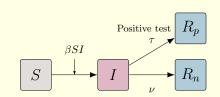
...

Model presentation

Analysis

Model dynamics Model analysis

Calculating correction-factor


Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio

Simplification and extension

Flow-considerations:

$$\frac{R_n}{R_n + R_p} = \frac{\nu}{\nu + \tau}$$

Determining COVID incidence

RK Pedersen

Introduction

The problemat

Model presentation

Analysis

Model dynamics Model analysis

Calculating correction-factor

Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio

Simplification and extension

R_n Positive test τ βSI S R_n v Flow-considerations: $\frac{R_n}{R_n + R_n} = \frac{\nu}{\nu + \tau}$ Correction factor: $\frac{\nu + \tau}{2}$

Determining COVID incidence

RK Pedersen

Introduction

The problemat

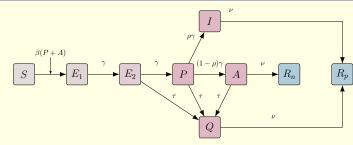
Model presentation

Analysis

Model dynamics Model analysis

Calculating correction-factor

Data and simulations


The data Relating to data

Discussion

Calculation of assertion ratio

Simplification and extension

Simplified method, Matrix-form

For SIR-type models², the inverse of a matrix V describing flows in the "infected sub-system" is typically computed to determine the reproduction number \mathcal{R}_0 .

Determining COVID incidence

RK Pedersen

Introduction

The problemat

Model presentation

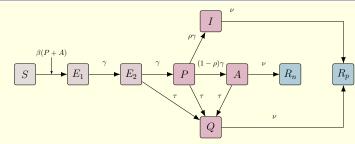
Analysis

Model dynamics Model analysis

Data and simulations

The data Relating to data

Discussion


Calculation of assertion ratio

Simplification and extension

General discussion

¹See (van den Drische and Watmough, 2002) for definition and derivation.

Simplified method, Matrix-form

For SIR-type models², the inverse of a matrix V describing flows in the "infected sub-system" is typically computed to determine the reproduction number \mathcal{R}_0 . With sub-system $x = (E_1, E_2, P, I, A)$ and matrix V, we consider "inputs" $\alpha = (1, 0, 0, 0, 0)$ and "outputs" $\omega = (0, 0, 0, 0, \nu)$, and find that:

$$\frac{R_n}{R_n + R_p} = \omega V^{-1} \alpha^T$$

¹See (van den Drische and Watmough, 2002) for definition and derivation.

15/17

Determining COVID incidence

RK Pedersen

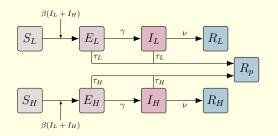
Introduction

The problemat

Model presentation

Analysis

Model dynamics Model analysis


Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio

Simplification and extension

Determining COVID incidence

RK Pedersen

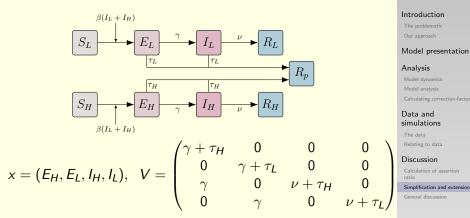
Introduction

The problemat

Model presentation

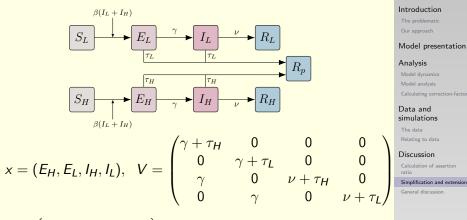
Analysis

Model dynamics Model analysis


Data and simulations

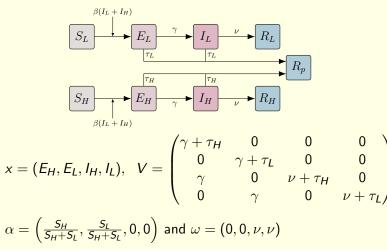
The data Relating to data

Discussion


Calculation of assertion ratio

Simplification and extension

Determining COVID incidence


RK Pedersen

 $\alpha = \left(\frac{S_H}{S_H + S_L}, \frac{S_L}{S_H + S_L}, 0, 0\right) \text{ and } \omega = (0, 0, \nu, \nu)$

Determining COVID incidence

RK Pedersen

Hence: $\omega V^{-1} \alpha^T = \frac{\nu \gamma}{S_H + S_L} \left(\frac{S_H}{(\nu + \tau_H)(\gamma + \tau_H)} + \frac{S_L}{(\nu + \tau_L)(\gamma + \tau_L)} \right)$

Determining COVID incidence

RK Pedersen

Introduction

The problemat

Model presentation

Analysis

Model dynamics Model analysis

Calculating correction-factor

Data and simulations

The data

Discussion

Calculation of assertion ratio

Simplification and extension

We determine a relation between observed COVID-19 cases and total new cases, as a function of testing-rate. Determining COVID incidence

RK Pedersen

Introduction

The problemat

Model presentation

Analysis

Model dynamics Model analysis Calculating correction-fac

Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio Simplification and extension

- We determine a relation between observed COVID-19 cases and total new cases, as a function of testing-rate.
- This relation may help us compare incidence between countries.

Determining COVID incidence

RK Pedersen

Introduction

The problemat

Model presentation

Analysis

Model dynamics Model analysis Calculating correction-fact

Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio Simplification and extension

Discussion

- We determine a relation between observed COVID-19 cases and total new cases, as a function of testing-rate.
- This relation may help us compare incidence between countries.
- Our initial analysis was model-specific and based on calculations of final-size of variables.

Determining COVID incidence

RK Pedersen

Introduction

The problemat Our approach

Model presentation

Analysis

Model dynamics Model analysis Calculating correction-facto

Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio Simplification and extension

Discussion

- We determine a relation between observed COVID-19 cases and total new cases, as a function of testing-rate.
- This relation may help us compare incidence between countries.
- Our initial analysis was model-specific and based on calculations of final-size of variables.
- Our new method follows from well-known results from the litterature, and requires only observing the model diagram or inverting a matrix...

Determining COVID incidence

RK Pedersen

Introduction

The problemat Our approach

Model presentation

Analysis

Model dynamics Model analysis Calculating correction-facto

Data and simulations

The data Relating to data

Discussion

Discussion

- We determine a relation between observed COVID-19 cases and total new cases, as a function of testing-rate.
- This relation may help us compare incidence between countries.
- Our initial analysis was model-specific and based on calculations of final-size of variables.
- Our new method follows from well-known results from the litterature, and requires only observing the model diagram or inverting a matrix, but also extends to a wider family of SIR-type models.

Determining COVID incidence

RK Pedersen

Introduction

The problemat Our approach

Model presentation

Analysis

Model dynamics Model analysis Calculating correction-facto

Data and simulations

The data Relating to data

Discussion

- We determine a relation between observed COVID-19 cases and total new cases, as a function of testing-rate.
- This relation may help us compare incidence between countries.
- Our initial analysis was model-specific and based on calculations of final-size of variables.
- Our new method follows from well-known results from the litterature, and requires only observing the model diagram or inverting a matrix, but also extends to a wider family of SIR-type models.
- My lesson from this: When working on modelling problems, look for simpler answers to the problems...

Determining COVID incidence

RK Pedersen

Introduction

The problemati Our approach

Model presentation

Analysis

Model dynamics Model analysis Calculating correction-facto

Data and simulations

The data Relating to data

Discussion

- We determine a relation between observed COVID-19 cases and total new cases, as a function of testing-rate.
- This relation may help us compare incidence between countries.
- Our initial analysis was model-specific and based on calculations of final-size of variables.
- Our new method follows from well-known results from the litterature, and requires only observing the model diagram or inverting a matrix, but also extends to a wider family of SIR-type models.
- My lesson from this: When working on modelling problems, look for simpler answers to the problems, before throwing yourself at the analysis and simulation!

Determining COVID incidence

RK Pedersen

Introduction

The problemat Our approach

Model presentation

Analysis

Model dynamics Model analysis Calculating correction-facto

Data and simulations

The data Relating to data

Discussion

Thank you for your attention.

Feel free to email me with questions or comments

Website: rasmuspedersen.com *Email:* rakrpe@ruc.dk

Determining COVID incidence

RK Pedersen

Introduction

The problemati Our approach

Model presentation

Analysis

Model dynamics Model analysis Calculating correction-facto

Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio Simplification and extension